Clustering in Data mining

clustering is a technique to prepare the group of similar data objects based on their internal similarity. the data objects are representing the properties or features of an individual pattern of data. these properties or features are used for computing the similarity or differences among the data objects. the data objects which are grouped is termed as the cluster of data. the cluster analysis includes two main components first is known as centroid and second is data objects or cluster members. Clustering is the grouping of a particular set of objects based on their characteristics, aggregating them according to their similarities. Regarding to data mining, this methodology partitions the data implementing a specific join algorithm, most suitable for the desired information analysis. This clustering analysis allows an object not to be part of a cluster, or strictly belong to it, calling this type of grouping hard partitioning [1]. In the other hand, soft partitioning states that every object belongs to a cluster in a determined degree. More specific divisions can be possible to create like objects belonging to multiple clusters, to force an object to participate in only one cluster or even construct hierarchical trees on group relationships There are…

Insert math as
Additional settings
Formula color
Text color
Type math using LaTeX
Nothing to preview