What is Ensemble Learning

Ensemble learning typically refers to methods that generate several models which are combined to make a prediction, either in classification or regression problems. This approach has been the object of a significant amount of research in recent years and good results have been reported. This section introduced basic of the ensemble learning of classification. Ensemble Learning : Overview Ensemble learning is a machine learning paradigm where multiple learners are trained to solve the same problem. In contrast to ordinary machine learning approaches which try to learn one hypothesis from training data, ensemble methods try to construct a set of hypotheses and combine them to use. An ensemble contains a number of learners which are usually called base learners. The generalization ability of an ensemble is usually much stronger than that of base learners. Actually, ensemble learning is appealing because that it is able to boost weak learners which are slightly better than random guess to strong learners which can make very accurate predictions. So, “base learners” are also referred as “weak learners”. It is noteworthy, however, that although most theoretical analyses work on weak learners, base learners used in practice are not necessarily weak since using not-so-weak base learners often…

Insert math as
Additional settings
Formula color
Text color
Type math using LaTeX
Nothing to preview